By exploiting the fact that conservation laws form the kernel of a discrete Euler operator, we use a recently introduced symbolic-numeric approach to construct a new class of finite difference methods for the modified Korteweg-de Vries (mKdV) equation, that preserve the local conservation laws of mass and energy.

Bespoke finite difference methods that preserve two local conservation laws of the modified KdV equation

Frasca Caccia Gianluca.
2019-01-01

Abstract

By exploiting the fact that conservation laws form the kernel of a discrete Euler operator, we use a recently introduced symbolic-numeric approach to construct a new class of finite difference methods for the modified Korteweg-de Vries (mKdV) equation, that preserve the local conservation laws of mass and energy.
2019
978-0-7354-1854-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4823153
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact