2D layered materials with their tunable bandgap and unique crystal structures are excellent candidates for 2D optoelectronic memories. In this work, we present a simple approach for the realization of a nonvolatile optoelectronic memory device based on a MoS2 transistor with light induced charge storage capability. The MoS2 transistor shows 10^8 on/off current ratio and hysteresis width modulation by air pressure under normal and quiet measurement conditions. Moreover, the device shows persistent photoconductivity and exhibits excellent photo responsive memory performance with a current switching ratio of two orders of magnitude and a photocurrent that increases linearly with the incident light power. We show that a combination of gate voltage and light can be used to control the transistor current and increase the memory window by two orders of magnitude. The obtained results are a significant step toward the improvement of optoelectronic devices, showing that the combination of gate voltage and light can enable a multilevel memory device.

Optoelectronic memory in 2D MoS2 field effect transistor

Kumar, Arun
Writing – Original Draft Preparation
;
Faella, Enver
Formal Analysis
;
Durante, Ofelia
Formal Analysis
;
Giubileo, Filippo
Investigation
;
Pelella, Aniello
Investigation
;
Viscardi, Loredana
Investigation
;
Intonti, Kimberly
Investigation
;
Di Bartolomeo, Antonio
Writing – Original Draft Preparation
2023-01-01

Abstract

2D layered materials with their tunable bandgap and unique crystal structures are excellent candidates for 2D optoelectronic memories. In this work, we present a simple approach for the realization of a nonvolatile optoelectronic memory device based on a MoS2 transistor with light induced charge storage capability. The MoS2 transistor shows 10^8 on/off current ratio and hysteresis width modulation by air pressure under normal and quiet measurement conditions. Moreover, the device shows persistent photoconductivity and exhibits excellent photo responsive memory performance with a current switching ratio of two orders of magnitude and a photocurrent that increases linearly with the incident light power. We show that a combination of gate voltage and light can be used to control the transistor current and increase the memory window by two orders of magnitude. The obtained results are a significant step toward the improvement of optoelectronic devices, showing that the combination of gate voltage and light can enable a multilevel memory device.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4824682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact