A majority of human colon carcinomas coexpress the epidermal growth factor (EGF)-related peptides transforming growth factor α (TGFα), amphiregulin (AR) and CRIPTO-1 (CR). We have synthesized novel, antisense mixed backbone oligonucleotides (AS MBOs) directed against TGFα, AR and CR. We screened the EGF-related AS MBOs for their ability to inhibit the anchorage independent growth of GEO human colon carcinoma cells. The MBOs that showed a high in vitro efficacy were then used for in vivo experiments. TGFα, AR and CR AS MBOs were able to inhibit the growth of GEO tumor xenografts in nude mice in a dose-dependent manner. Furthermore, the AS MBOs were able to specifically inhibit the expression of the target mRNAs and proteins in the tumor xenografts. A more significant tumor growth inhibition was observed when mice were treated with a combination of the three AS MBOs as compared to treatment with a single AS MBO. Finally, tumors from mice treated with TGFα, AR and CR AS MBOs showed a significant reduction of microvessel count, as compared with tumors from untreated mice or from mice treated with a single AS MBO. These data suggest that combinations of AS oligonucleotides directed against different growth factors might represent a novel, experimental therapy approach of colon carcinomas.

Simultaneous blockade of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts

Arra C.;D'Antonio A.;Ferraro P.;Ciardiello F.;
2000-01-01

Abstract

A majority of human colon carcinomas coexpress the epidermal growth factor (EGF)-related peptides transforming growth factor α (TGFα), amphiregulin (AR) and CRIPTO-1 (CR). We have synthesized novel, antisense mixed backbone oligonucleotides (AS MBOs) directed against TGFα, AR and CR. We screened the EGF-related AS MBOs for their ability to inhibit the anchorage independent growth of GEO human colon carcinoma cells. The MBOs that showed a high in vitro efficacy were then used for in vivo experiments. TGFα, AR and CR AS MBOs were able to inhibit the growth of GEO tumor xenografts in nude mice in a dose-dependent manner. Furthermore, the AS MBOs were able to specifically inhibit the expression of the target mRNAs and proteins in the tumor xenografts. A more significant tumor growth inhibition was observed when mice were treated with a combination of the three AS MBOs as compared to treatment with a single AS MBO. Finally, tumors from mice treated with TGFα, AR and CR AS MBOs showed a significant reduction of microvessel count, as compared with tumors from untreated mice or from mice treated with a single AS MBO. These data suggest that combinations of AS oligonucleotides directed against different growth factors might represent a novel, experimental therapy approach of colon carcinomas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4825367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact