Although quantile regression to calculate risk measures is widely established in the financial literature, when considering data observed at mixed-frequency, an extension is needed. In this paper, a model is built on a mixed-frequency quantile regressions to directly estimate the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures. In particular, the low-frequency component incorporates information coming from variables observed at, typically, monthly or lower frequencies, while the high-frequency component can include a variety of daily variables, like market indices or realized volatility measures. The conditions for the weak stationarity of the daily return process are derived and the finite sample properties are investigated in an extensive Monte Carlo exercise. The validity of the proposed model is then explored through a real data application using two energy commodities, namely, Crude Oil and Gasoline futures. Results show that our model outperforms other competing specifications, on the basis of some popular VaR and ES backtesting test procedures.

Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall

Candila, Vincenzo
;
2023-01-01

Abstract

Although quantile regression to calculate risk measures is widely established in the financial literature, when considering data observed at mixed-frequency, an extension is needed. In this paper, a model is built on a mixed-frequency quantile regressions to directly estimate the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures. In particular, the low-frequency component incorporates information coming from variables observed at, typically, monthly or lower frequencies, while the high-frequency component can include a variety of daily variables, like market indices or realized volatility measures. The conditions for the weak stationarity of the daily return process are derived and the finite sample properties are investigated in an extensive Monte Carlo exercise. The validity of the proposed model is then explored through a real data application using two energy commodities, namely, Crude Oil and Gasoline futures. Results show that our model outperforms other competing specifications, on the basis of some popular VaR and ES backtesting test procedures.
File in questo prodotto:
File Dimensione Formato  
bba51e60-7812-47c7-ac06-ea6991ed2ba6.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 749.46 kB
Formato Adobe PDF
749.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4826435
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact