We first prove that the realization A_{min} of A := div(Q∇) − V in L^{2}(R^{d}) with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on L^2(R^d) which coincides on L^2(R^d) ∩ C_{b}(R^d) with the minimal semigroup generated by a realization of A on C_b(R^d). Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of A and deduce some spectral properties of Amin in the case of polynomially and exponentially growing diffusion and potential coefficients.

General kernel estimates of Schrödinger-type operators with unbounded diffusion terms

Loredana Caso;Marianna Porfido;Abdelaziz Rhandi
2023-01-01

Abstract

We first prove that the realization A_{min} of A := div(Q∇) − V in L^{2}(R^{d}) with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on L^2(R^d) which coincides on L^2(R^d) ∩ C_{b}(R^d) with the minimal semigroup generated by a realization of A on C_b(R^d). Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of A and deduce some spectral properties of Amin in the case of polynomially and exponentially growing diffusion and potential coefficients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4826733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact