Continuing our earlier work on the application of the Relativistic Generalized Uncertainty Principle (RGUP) to quantum field theories, in this paper we study Quantum Electrodynamics (QED) with minimum length. We obtain expressions for the Lagrangian, Feynman rules and scattering amplitudes of the theory, and discuss their consequences for current and future high energy physics experiments. We hope this will provide an improved window for testing Quantum Gravity effects in the laboratory.
Quantum field theory with the generalized uncertainty principle II: Quantum Electrodynamics
Bosso P.;
2021
Abstract
Continuing our earlier work on the application of the Relativistic Generalized Uncertainty Principle (RGUP) to quantum field theories, in this paper we study Quantum Electrodynamics (QED) with minimum length. We obtain expressions for the Lagrangian, Feynman rules and scattering amplitudes of the theory, and discuss their consequences for current and future high energy physics experiments. We hope this will provide an improved window for testing Quantum Gravity effects in the laboratory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.