The need to reduce the concentration of CO2 in the atmosphere is becoming increasingly necessary since it is considered the main factor responsible for climate change. Carbon Capture and Utilization (CCU) technology offers the opportunity to obtain a wide range of chemicals using this molecule as a raw material. In this work, the catalytic Non-Thermal Plasma (NTP)-assisted hydrogenation of CO2 to CH4 (methanation reaction) in a Dielectric Barrier Discharge (DBD) reactor was investigated. Four different Ru- and Rh-based catalysts were prepared starting from gamma-Al2O3 spheres, characterized and tested in both thermal and NTP-assisted methanation under different operating conditions. The experimental tests evidenced the very positive effect of the NTP application on the catalytic performance, highlighting that for all the catalysts the same CO2 conversion was reached at a temperature 150 degrees C lower with respect to the conventional thermal reaction. Among the prepared catalysts, the bimetallic ones showed the best performance, reaching a CO2 conversion of 97% at about 180 degrees C with a lower energy consumption with respect to similar catalysts present in the literature.

Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma

Meloni, E
;
Cafiero, L;Renda, S;Martino, M;Pierro, M;Palma, V
2023-01-01

Abstract

The need to reduce the concentration of CO2 in the atmosphere is becoming increasingly necessary since it is considered the main factor responsible for climate change. Carbon Capture and Utilization (CCU) technology offers the opportunity to obtain a wide range of chemicals using this molecule as a raw material. In this work, the catalytic Non-Thermal Plasma (NTP)-assisted hydrogenation of CO2 to CH4 (methanation reaction) in a Dielectric Barrier Discharge (DBD) reactor was investigated. Four different Ru- and Rh-based catalysts were prepared starting from gamma-Al2O3 spheres, characterized and tested in both thermal and NTP-assisted methanation under different operating conditions. The experimental tests evidenced the very positive effect of the NTP application on the catalytic performance, highlighting that for all the catalysts the same CO2 conversion was reached at a temperature 150 degrees C lower with respect to the conventional thermal reaction. Among the prepared catalysts, the bimetallic ones showed the best performance, reaching a CO2 conversion of 97% at about 180 degrees C with a lower energy consumption with respect to similar catalysts present in the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4827232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact