In the Supercritical Antisolvent process (SAS), the thermodynamic behavior of complex multicomponent systems can influence the particles' morphology. However, due to the limited thermodynamic data for multicomponent systems, the effect of solutes is often neglected, and the system is considered as pseudo-binary. It has been demonstrated that the presence of a solute can significantly influence the thermodynamic behavior of the system. In particular, when the SAS process is adopted for the production of drug/polymer coprecipitated microparticles, the effect of both the drug and the polymer in the solvent/CO2 mixture should be considered. In this work, the effect of polyvinylpyrrolidone (PVP), used as the carrier, and of the liposoluble vitamins menadione (MEN) and alpha-tocopherol (TOC), as model drugs, was investigated as a deviation from the fundamental thermodynamic behavior of the DMSO/CO2 binary system. Vapor-liquid equilibria (VLE) were evaluated at 313 K, with a PVP concentration in the organic solution equal to 20 mg/mL. The effect of the presence of PVP, MEN, and TOC on DMSO/CO2 VLE at 313 K was studied; furthermore, the effect of PVP/MEN and PVP/TOC, at a polymer/drug ratio of 5/1 and 3/1, was determined. Moreover, SAS precipitation experiments were performed at the same polymer/drug ratios using a pressure of 90 bar. Thermodynamic studies revealed significant changes in phase behavior for DMSO/CO2/PVP/TOC and DMSO/CO2/PVP/MEN systems compared to the binary DMSO/CO2 system. From the analysis of the effect of the presence of a single compound on the binary system VLE, it was noted that PVP slightly affected the thermodynamic behavior of the system. In contrast, these effects were more evident for the DMSO/CO2/TOC and DMSO/CO2/MEN systems. SAS precipitation experiments produced PVP/MEN and PVP/TOC microparticles, and the obtained morphology was justified considering the quaternary systems VLE.

Vapor-Liquid Equilibria of Quaternary Systems of Interest for the Supercritical Antisolvent Process

Campardelli, R;Mottola, S;De Marco, I
2022-01-01

Abstract

In the Supercritical Antisolvent process (SAS), the thermodynamic behavior of complex multicomponent systems can influence the particles' morphology. However, due to the limited thermodynamic data for multicomponent systems, the effect of solutes is often neglected, and the system is considered as pseudo-binary. It has been demonstrated that the presence of a solute can significantly influence the thermodynamic behavior of the system. In particular, when the SAS process is adopted for the production of drug/polymer coprecipitated microparticles, the effect of both the drug and the polymer in the solvent/CO2 mixture should be considered. In this work, the effect of polyvinylpyrrolidone (PVP), used as the carrier, and of the liposoluble vitamins menadione (MEN) and alpha-tocopherol (TOC), as model drugs, was investigated as a deviation from the fundamental thermodynamic behavior of the DMSO/CO2 binary system. Vapor-liquid equilibria (VLE) were evaluated at 313 K, with a PVP concentration in the organic solution equal to 20 mg/mL. The effect of the presence of PVP, MEN, and TOC on DMSO/CO2 VLE at 313 K was studied; furthermore, the effect of PVP/MEN and PVP/TOC, at a polymer/drug ratio of 5/1 and 3/1, was determined. Moreover, SAS precipitation experiments were performed at the same polymer/drug ratios using a pressure of 90 bar. Thermodynamic studies revealed significant changes in phase behavior for DMSO/CO2/PVP/TOC and DMSO/CO2/PVP/MEN systems compared to the binary DMSO/CO2 system. From the analysis of the effect of the presence of a single compound on the binary system VLE, it was noted that PVP slightly affected the thermodynamic behavior of the system. In contrast, these effects were more evident for the DMSO/CO2/TOC and DMSO/CO2/MEN systems. SAS precipitation experiments produced PVP/MEN and PVP/TOC microparticles, and the obtained morphology was justified considering the quaternary systems VLE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4827719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact