The agricultural sector is constantly evolving. The rise in the world’s population generates an increasingly growing demand for food, resulting in the need for the agroindustry to meet this demand. Tractors are the vehicles that have made a real difference in agriculture’s development throughout history, lowering costs in soil tillage and facilitating activities and operations for workers. This study aims to successfully design and build an autonomous, electric agricultural tractor that can autonomously perform recurring tasks in open-field and greenhouse applications. This project is fully part of the new industrial and agronomic revolution, known as Factory 4.0 and Agriculture 4.0. The predetermined functional requirements for the vehicle are its lightweight, accessible price, the easy availability of its spare parts, and its simple, ordinary maintenance. In this first study, the preliminary phases of sizing and conceptual design of the rover are reported before subsequently proceeding to the dynamical analysis. To optimize the design of the various versions of the automated vehicle, it is decided that a standard chassis would be built based on a robot operating inside a greenhouse on soft and flat terrains. The SimScape multi-body environment is used to model the kinematics of the non-back-drivable screw jack mechanism for the hitch-lifting arms. The control unit for the force exerted is designed and analyzed by means of an inverse dynamics simulation to evaluate the force and electric power consumed by the actuators. The results obtained from the analysis are essential for the final design of the autonomous electric tractor.

Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors

De Simone M. C.
;
Veneziano S.;Guida D.
2022-01-01

Abstract

The agricultural sector is constantly evolving. The rise in the world’s population generates an increasingly growing demand for food, resulting in the need for the agroindustry to meet this demand. Tractors are the vehicles that have made a real difference in agriculture’s development throughout history, lowering costs in soil tillage and facilitating activities and operations for workers. This study aims to successfully design and build an autonomous, electric agricultural tractor that can autonomously perform recurring tasks in open-field and greenhouse applications. This project is fully part of the new industrial and agronomic revolution, known as Factory 4.0 and Agriculture 4.0. The predetermined functional requirements for the vehicle are its lightweight, accessible price, the easy availability of its spare parts, and its simple, ordinary maintenance. In this first study, the preliminary phases of sizing and conceptual design of the rover are reported before subsequently proceeding to the dynamical analysis. To optimize the design of the various versions of the automated vehicle, it is decided that a standard chassis would be built based on a robot operating inside a greenhouse on soft and flat terrains. The SimScape multi-body environment is used to model the kinematics of the non-back-drivable screw jack mechanism for the hitch-lifting arms. The control unit for the force exerted is designed and analyzed by means of an inverse dynamics simulation to evaluate the force and electric power consumed by the actuators. The results obtained from the analysis are essential for the final design of the autonomous electric tractor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4828551
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 2
social impact