Background: COVID-19, declared a pandemic in March 2020 by the World Health Organization is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus has already killed more than 2.3 million people worldwide. Object: The principal intent of this work was to investigate lead compounds by screening natural product library (NPASS) for possible treatment of COVID-19.Methods: Pharmacophore features were used to screen a large database to get a small dataset for structure-based virtual screening of natural product compounds. In the structure-based screening, molecular docking was performed to find a potent inhibitor molecule against the main protease (Mpro) of SARS-CoV-2 (PDB ID: 6Y7M). The predicted lead compound was further subjected to Molecular Dynamics (MD) simulation to check the stability of the leads compound with the evolution of time.Results: In pharmacophore-based virtual screening, 2,361 compounds were retained out of 30,927. In the structure-based screening, the lead compounds were filtered based on their docking scores. Among the 2,360 compounds, 12 lead compounds were selected based on their docking score. Kazinol T with NPASS ID: NPC474104 showed the highest docking score of -14.355 and passed criteria of Lipinski's drug-like parameters. Monitoring ADMET properties, Kazinol T showed its safety for consumption. Docking of Kazinol T with two Asian mutants (R60C and I152V) showed variations in binding and energy parameters. Normal mode analysis for ligand-bound and unbound form of protease along with its mutants, revealed displacement and correlation parameters for C-alpha atoms. MD simulation results showed that all ligand-protein complexes remained intact and stable in a dynamic environment with negative Gibbs free energy.Conclusions: The natural product Kazinol T was a predicted lead compound against the main protease of SARSCoV-2 and will be the possible treatment for COVID-19.

Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants

Rastrelli, Luca;
2021-01-01

Abstract

Background: COVID-19, declared a pandemic in March 2020 by the World Health Organization is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus has already killed more than 2.3 million people worldwide. Object: The principal intent of this work was to investigate lead compounds by screening natural product library (NPASS) for possible treatment of COVID-19.Methods: Pharmacophore features were used to screen a large database to get a small dataset for structure-based virtual screening of natural product compounds. In the structure-based screening, molecular docking was performed to find a potent inhibitor molecule against the main protease (Mpro) of SARS-CoV-2 (PDB ID: 6Y7M). The predicted lead compound was further subjected to Molecular Dynamics (MD) simulation to check the stability of the leads compound with the evolution of time.Results: In pharmacophore-based virtual screening, 2,361 compounds were retained out of 30,927. In the structure-based screening, the lead compounds were filtered based on their docking scores. Among the 2,360 compounds, 12 lead compounds were selected based on their docking score. Kazinol T with NPASS ID: NPC474104 showed the highest docking score of -14.355 and passed criteria of Lipinski's drug-like parameters. Monitoring ADMET properties, Kazinol T showed its safety for consumption. Docking of Kazinol T with two Asian mutants (R60C and I152V) showed variations in binding and energy parameters. Normal mode analysis for ligand-bound and unbound form of protease along with its mutants, revealed displacement and correlation parameters for C-alpha atoms. MD simulation results showed that all ligand-protein complexes remained intact and stable in a dynamic environment with negative Gibbs free energy.Conclusions: The natural product Kazinol T was a predicted lead compound against the main protease of SARSCoV-2 and will be the possible treatment for COVID-19.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4837251
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact