We describe the asymptotic behaviour of the exact controls and the corresponding states of the wave equation in a ε- periodic two component composite with a jump of the solution on the interface depending on a parameter γ. The approach to the exact controllability process is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions. We prove that, according to the values of γ, the exact controls and the corresponding solutions of the ε-problems converge to the exact controls of different homogenized problems and to the corresponding solutions, respectively.

Recent results on the exact controllability of problems with imperfect interface

Monsurrò, Sara
2023

Abstract

We describe the asymptotic behaviour of the exact controls and the corresponding states of the wave equation in a ε- periodic two component composite with a jump of the solution on the interface depending on a parameter γ. The approach to the exact controllability process is developed by applying the Hilbert Uniqueness Method, introduced by J. -L. Lions. We prove that, according to the values of γ, the exact controls and the corresponding solutions of the ε-problems converge to the exact controls of different homogenized problems and to the corresponding solutions, respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4838191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact