Owing of their accessibility and wide range of reactivities, alkynes make for fascinating building blocks. Either a selective alkyne carbon-carbon triple bond reaction or activation of the terminal alkyne C-H bond may be employed to functionalize them. Monocationic coinage metal complexes with a d10 electronic configuration are effective catalysts for alkyne activation. Silver(I) and gold(I) N-heterocyclic (NHC) systems are emerging as promising catalysts in multicomponent alkyne activation reactions; this review paper focuses on A(3) (aldehyde-amine-alkyne)-coupling reaction and carbon dioxide fixation, furnishing a systematic overview of the scientific advances achieved during the last two decades. This study will carefully compare the corresponding silver and gold complexes employed in the two processes. The differences in reaction routes brought about by the catalyst ligand structure will be investigated with an emphasis on evaluating the benefits provided by the easily tuneable NHC backbone, in terms of chemo- and stereo-selectivity.

Recent Advances in N-Heterocyclic Carbene Coinage Metal Complexes in A(3)-Coupling and Carboxylation Reaction

D'Amato, A;Sirignano, M;Russo, S;Troiano, R;Mariconda, A
;
Longo, P
2023-01-01

Abstract

Owing of their accessibility and wide range of reactivities, alkynes make for fascinating building blocks. Either a selective alkyne carbon-carbon triple bond reaction or activation of the terminal alkyne C-H bond may be employed to functionalize them. Monocationic coinage metal complexes with a d10 electronic configuration are effective catalysts for alkyne activation. Silver(I) and gold(I) N-heterocyclic (NHC) systems are emerging as promising catalysts in multicomponent alkyne activation reactions; this review paper focuses on A(3) (aldehyde-amine-alkyne)-coupling reaction and carbon dioxide fixation, furnishing a systematic overview of the scientific advances achieved during the last two decades. This study will carefully compare the corresponding silver and gold complexes employed in the two processes. The differences in reaction routes brought about by the catalyst ligand structure will be investigated with an emphasis on evaluating the benefits provided by the easily tuneable NHC backbone, in terms of chemo- and stereo-selectivity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4841754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact