Novel photocathode materials like ordered surfaces of single crystal metals, epitaxially grown high quantum efficiency thin films, and topologically non-trivial materials with dirac cones show great promise for generating brighter electron beams for various accelerator and ultrafast electron scattering applications. Despite several materials being identified as brighter photocathodes, none of them have been tested in electron guns to extract electron beams due to technical and logistical challenges. In this paper, we present the design and commissioning of a cryocooled 200 kV DC electron gun that is capable of testing a wide variety of novel photocathode materials over a broad range of temperatures from 298 to 35 K for bright electron beam generation. This gun is designed to enable easy transfer of the photocathode to various standard ultra-high-vacuum surface diagnostics and preparation techniques, allowing a full characterization of the dependence of beam brightness on the photocathode material and surface properties. We demonstrate the development of such a high-voltage, high-gradient gun using materials and equipment that are easily available in any standard university lab, making the development of such 200 kV electron guns more accessible.

A cryogenically cooled 200 kV DC photoemission electron gun for ultralow emittance photocathodes

Alice Galdi;
2023-01-01

Abstract

Novel photocathode materials like ordered surfaces of single crystal metals, epitaxially grown high quantum efficiency thin films, and topologically non-trivial materials with dirac cones show great promise for generating brighter electron beams for various accelerator and ultrafast electron scattering applications. Despite several materials being identified as brighter photocathodes, none of them have been tested in electron guns to extract electron beams due to technical and logistical challenges. In this paper, we present the design and commissioning of a cryocooled 200 kV DC electron gun that is capable of testing a wide variety of novel photocathode materials over a broad range of temperatures from 298 to 35 K for bright electron beam generation. This gun is designed to enable easy transfer of the photocathode to various standard ultra-high-vacuum surface diagnostics and preparation techniques, allowing a full characterization of the dependence of beam brightness on the photocathode material and surface properties. We demonstrate the development of such a high-voltage, high-gradient gun using materials and equipment that are easily available in any standard university lab, making the development of such 200 kV electron guns more accessible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4844236
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact