Multi-object data fusion - combining measurements or estimates of more than one truth object from more than one observer - requires a first "data association" step of deciding which data have common truth objects. Here we focus on the case of two observers only, with the data association engine powered by a polynomially-complex list-matching algorithm such as of Jonker-Volgenant-Castanon (JVC), auction or Munkres. The paper's purpose is to develop an approximation for the probability of assignment error: How often does the data association engine tell the fuser to combine data from truth objects that do not go together? We assume data with Gaussian errors and a Poisson field of truth objects, and we focus on the low-noise case where errors are infrequent and fusion makes sense. In this article, for isotropic, independent identically distributed errors, a single scalar parameter representative of the scene complexity is identified and, exploiting that, a reasonably simple approximate expression for the association error is derived.

When the Closest Targets Make the Difference: An Analysis of Data Association Errors

Stefano Marano;
2022-01-01

Abstract

Multi-object data fusion - combining measurements or estimates of more than one truth object from more than one observer - requires a first "data association" step of deciding which data have common truth objects. Here we focus on the case of two observers only, with the data association engine powered by a polynomially-complex list-matching algorithm such as of Jonker-Volgenant-Castanon (JVC), auction or Munkres. The paper's purpose is to develop an approximation for the probability of assignment error: How often does the data association engine tell the fuser to combine data from truth objects that do not go together? We assume data with Gaussian errors and a Poisson field of truth objects, and we focus on the low-noise case where errors are infrequent and fusion makes sense. In this article, for isotropic, independent identically distributed errors, a single scalar parameter representative of the scene complexity is identified and, exploiting that, a reasonably simple approximate expression for the association error is derived.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4845733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact