Nickel-based coatings are widely used as thermal barriers in several sectors thanks to their remarkable corrosion and wear resistance and outstanding stability at high temperatures. Recently, Ni coatings, produced with thermal spraying and vacuum techniques, have been investigated for solar power energy applications. In the present manuscript, low-pressure cold spray (LPCS) was used to deposit pure Nickel onto a steel substrate. The influence of gas temperature, nozzle stand-off distance, and advancing speed on morphological and mechanical properties were studied. The optimal deposition conditions were derived by ANOVA analysis. The hardness and the adhesion strength were approximately 160 HV and 26 MPa, respectively. The highest thickness obtained under the optimised deposition with a single pass was around 900 & mu;m.
Mechanical optimisation of Ni coatings produced by low-pressure cold spray
Rubino, F
;Tucci, F;
2023
Abstract
Nickel-based coatings are widely used as thermal barriers in several sectors thanks to their remarkable corrosion and wear resistance and outstanding stability at high temperatures. Recently, Ni coatings, produced with thermal spraying and vacuum techniques, have been investigated for solar power energy applications. In the present manuscript, low-pressure cold spray (LPCS) was used to deposit pure Nickel onto a steel substrate. The influence of gas temperature, nozzle stand-off distance, and advancing speed on morphological and mechanical properties were studied. The optimal deposition conditions were derived by ANOVA analysis. The hardness and the adhesion strength were approximately 160 HV and 26 MPa, respectively. The highest thickness obtained under the optimised deposition with a single pass was around 900 & mu;m.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.