Computer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly and to control the spread of the disease. In this work we propose a light Convolutional Neural Network (CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images with respect to other community-acquired pneumonia and/or healthy CT images. The architecture allows to an accuracy of 85.03% with an improvement of about 3.2% in the first dataset arrangement and of about 2.1% in the second dataset arrangement. The obtained gain, though of low entity, can be really important in medical diagnosis and, in particular, for Covid-19 scenario. Also the average classification time on a high-end workstation, 1.25 s, is very competitive with respect to that of more complex CNN designs, 13.41 s, witch require pre-processing. The proposed CNN can be executed on medium-end laptop without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. The performance of the method can be further improved with efficient pre-processing strategies for witch GPU acceleration is not necessary. (C) 2020 Elsevier B.V. All rights reserved.
A light CNN for detecting COVID-19 from CT scans of the chest
Polsinelli, Matteo
;
2020-01-01
Abstract
Computer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly and to control the spread of the disease. In this work we propose a light Convolutional Neural Network (CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images with respect to other community-acquired pneumonia and/or healthy CT images. The architecture allows to an accuracy of 85.03% with an improvement of about 3.2% in the first dataset arrangement and of about 2.1% in the second dataset arrangement. The obtained gain, though of low entity, can be really important in medical diagnosis and, in particular, for Covid-19 scenario. Also the average classification time on a high-end workstation, 1.25 s, is very competitive with respect to that of more complex CNN designs, 13.41 s, witch require pre-processing. The proposed CNN can be executed on medium-end laptop without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. The performance of the method can be further improved with efficient pre-processing strategies for witch GPU acceleration is not necessary. (C) 2020 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167865520303688-main.pdf
non disponibili
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Copyright dell'editore
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.