Given the role of road tunnels in a road network, it is relevant to quantitatively assess their resilience due to disruptive events. In this respect, the travel speed of traffic flow, as a metric of resilience, in the event of traffic accidents in road tunnels has been scarcely used. This represents a gap of knowledge that this paper intends to fill. For the purpose, the research method applied involves the development of a traffic macro-simulation model, and the analysis of results using the average travel speed and its spatial profile as a resilience metric. Particularly, we have evaluated the resilience of a twin-tube motorway tunnel when a traffic accident occurs in a tube. The findings showed how the best functionality level of the system, expressed in terms of average vehicles’ speed, with its related greatest resilience index, is associated with the partial closure of the disrupted tube rather than the complete one. Further benefits might be obtained by activating Variable Message Signs (VMSs) that alert only the Heavy Goods Vehicles (HGVs) to exit the motorway before entering the tunnel and to use an alternative itinerary identified in the nearby transportation network. In this respect, we found that by means of the activation of VMSs as a traffic control strategy, the resilience index increased by about 7–17% when the traffic accident caused the partial closure of the disrupted tube for 1–3 h. Improvements might also be achieved by rapidly opening the two traffic by-passes at the tunnel portals that allow for the use of the adjacent undisrupted tube for two-way traffic. The unavailability of an alternative itinerary in the nearby transportation network along which to re-route the HGVs is also examined, finding a reduction in the functionality conditions of the system. The results obtained might serve as a support tool in the choice of functional recovery strategies in the case of the temporary partial or complete block of a tunnel tube due to a traffic accident.

A Resilience Analysis of a Motorway Tunnel Affected by a Traffic Accident Using the Average Vehicles' Speed as a Metric

Ciro Caliendo
Supervision
;
Isidoro Russo
Software
;
Gianluca Genovese
Software
2024-01-01

Abstract

Given the role of road tunnels in a road network, it is relevant to quantitatively assess their resilience due to disruptive events. In this respect, the travel speed of traffic flow, as a metric of resilience, in the event of traffic accidents in road tunnels has been scarcely used. This represents a gap of knowledge that this paper intends to fill. For the purpose, the research method applied involves the development of a traffic macro-simulation model, and the analysis of results using the average travel speed and its spatial profile as a resilience metric. Particularly, we have evaluated the resilience of a twin-tube motorway tunnel when a traffic accident occurs in a tube. The findings showed how the best functionality level of the system, expressed in terms of average vehicles’ speed, with its related greatest resilience index, is associated with the partial closure of the disrupted tube rather than the complete one. Further benefits might be obtained by activating Variable Message Signs (VMSs) that alert only the Heavy Goods Vehicles (HGVs) to exit the motorway before entering the tunnel and to use an alternative itinerary identified in the nearby transportation network. In this respect, we found that by means of the activation of VMSs as a traffic control strategy, the resilience index increased by about 7–17% when the traffic accident caused the partial closure of the disrupted tube for 1–3 h. Improvements might also be achieved by rapidly opening the two traffic by-passes at the tunnel portals that allow for the use of the adjacent undisrupted tube for two-way traffic. The unavailability of an alternative itinerary in the nearby transportation network along which to re-route the HGVs is also examined, finding a reduction in the functionality conditions of the system. The results obtained might serve as a support tool in the choice of functional recovery strategies in the case of the temporary partial or complete block of a tunnel tube due to a traffic accident.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4846871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact