The aim of this study was to evaluate the feasibility of using cryopreserved S. aurata semen in spermiotoxicity tests. Cryopreservation is a biotechnology that can provide viable gametes and embryos on demand, rather than only in the spawning season, thus overcoming a limitation that has hindered the use of some species in ecotoxicological bioassays.Firstly, the sperm motility pattern of cryopreserved semen was evaluated after thawing by means of both visual and computer-assisted analyses. Motility parameters in the cryopreserved semen did not change significantly in the first hour after thawing, meaning that they were maintained for long enough to enable their use in spermiotoxicity tests. In the second phase of the research, bioassays were performed, using cadmium as the reference toxicant, in order to evaluate the sensitivity of cryopreserved S. aurata semen to ecotoxicological contamination.The sensitivity of the sperm motility parameters used as endpoints (motility percentages and velocities) proved to be comparable to what has been recorded for the fresh semen of other aquatic species (LOECs from 0.02 to 0.03 mg L-1). The test showed good reliability and was found to be rapid and easy to perform, requiring only a small volume of the sample. Moreover, cryopreserved semen is easy to store and transfer and makes it possible to perform bioassays in different sites or at different times with the same batch of semen.The proposed bioassay is therefore a promising starting point for the development of toxicity tests that are increasingly tailored to the needs of ecotoxicology and environmental quality evaluation strategies. (C) 2012 Elsevier Inc. All rights reserved.

Cryopreserved semen in ecotoxicological bioassays: sensitivity and reliability of cryopreserved Sparus aurata spermatozoa

Del Prete, Francesco;
2012-01-01

Abstract

The aim of this study was to evaluate the feasibility of using cryopreserved S. aurata semen in spermiotoxicity tests. Cryopreservation is a biotechnology that can provide viable gametes and embryos on demand, rather than only in the spawning season, thus overcoming a limitation that has hindered the use of some species in ecotoxicological bioassays.Firstly, the sperm motility pattern of cryopreserved semen was evaluated after thawing by means of both visual and computer-assisted analyses. Motility parameters in the cryopreserved semen did not change significantly in the first hour after thawing, meaning that they were maintained for long enough to enable their use in spermiotoxicity tests. In the second phase of the research, bioassays were performed, using cadmium as the reference toxicant, in order to evaluate the sensitivity of cryopreserved S. aurata semen to ecotoxicological contamination.The sensitivity of the sperm motility parameters used as endpoints (motility percentages and velocities) proved to be comparable to what has been recorded for the fresh semen of other aquatic species (LOECs from 0.02 to 0.03 mg L-1). The test showed good reliability and was found to be rapid and easy to perform, requiring only a small volume of the sample. Moreover, cryopreserved semen is easy to store and transfer and makes it possible to perform bioassays in different sites or at different times with the same batch of semen.The proposed bioassay is therefore a promising starting point for the development of toxicity tests that are increasingly tailored to the needs of ecotoxicology and environmental quality evaluation strategies. (C) 2012 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4848211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact