Given a random variable $X$ and considered a family of its possible distortions, we define two new measures of distance between $X$ and each its distortion. For these distance measures, which are extensions of the Gini's mean difference, conditions are determined for the existence of a minimum, or a maximum, within specific families of distortions, generalizing some results presented in the recent literature.

Generalized Gini's mean difference through distortions and copulas, and related minimizing problems

Capaldo, Marco;Di Crescenzo, Antonio;Pellerey, Franco
2024-01-01

Abstract

Given a random variable $X$ and considered a family of its possible distortions, we define two new measures of distance between $X$ and each its distortion. For these distance measures, which are extensions of the Gini's mean difference, conditions are determined for the existence of a minimum, or a maximum, within specific families of distortions, generalizing some results presented in the recent literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4850825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact