Urban green planning is crucial in promoting sustainable urban ecosystems through the mindful use of vegetation, but few approaches are currently able to account for the ecosystem services provided by urban green planning in ex ante planning applications. The present research proposes a methodological approach to sustainable urban planning that accounts for the ecological role of vegetation in urban ecosystems. Indeed, by estimating the functions exerted by different vegetation elements in urban ecosystems through a purposely developed set of equations, the procedure allows for the optimization of the development of urban plans by maximizing the contribution of vegetation to ecosystem dynamics. Specifically, the proposed methodology is articulated in two phases, i.e., the functional role of vegetation is firstly modeled through simple geometric features and specific ecological traits accounting for plant interactions with the environment, and then the selected vegetation traits are used in guiding the choice of the species. The approach has been exemplified through case studies, thereby highlighting its ability to guide planning decisions based on the type, abundance, and spatial organization of vegetation to promote the sustainability of urban development.

The ecological efficiency of green materials in sustainable urban planning — A model for its measurement

Fasolino, Isidoro;Cicalese, Federica;Bellino, Alessandro
;
Grimaldi, Michele;Baldantoni, Daniela
2023-01-01

Abstract

Urban green planning is crucial in promoting sustainable urban ecosystems through the mindful use of vegetation, but few approaches are currently able to account for the ecosystem services provided by urban green planning in ex ante planning applications. The present research proposes a methodological approach to sustainable urban planning that accounts for the ecological role of vegetation in urban ecosystems. Indeed, by estimating the functions exerted by different vegetation elements in urban ecosystems through a purposely developed set of equations, the procedure allows for the optimization of the development of urban plans by maximizing the contribution of vegetation to ecosystem dynamics. Specifically, the proposed methodology is articulated in two phases, i.e., the functional role of vegetation is firstly modeled through simple geometric features and specific ecological traits accounting for plant interactions with the environment, and then the selected vegetation traits are used in guiding the choice of the species. The approach has been exemplified through case studies, thereby highlighting its ability to guide planning decisions based on the type, abundance, and spatial organization of vegetation to promote the sustainability of urban development.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4850848
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact