Uncertainty quantification in automated image analysis is highly desired in many applications. Typically, machine learning models in classification or segmentation are only developed to provide binary answers; however, quantifying the uncertainty of the models can play a critical role for example in active learning or machine human interaction. Uncertainty quantification is especially difficult when using deep learning-based models, which are the state-of-the-art in many imaging applications. The current uncertainty quantification approaches do not scale well in high-dimensional real-world problems. Scalable solutions often rely on classical techniques, such as dropout, during inference or training ensembles of identical models with different random seeds to obtain a posterior distribution. In this paper, we present the following contributions. First, we show that the classical approaches fail to approximate the classification probability. Second, we propose a scalable and intuitive framework for uncertainty quantification in medical image segmentation that yields measurements that approximate the classification probability. Third, we suggest the usage of k-fold cross-validation to overcome the need for held out calibration data. Lastly, we motivate the adoption of our method in active learning, creating pseudo-labels to learn from unlabeled images and human-machine collaboration.

Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation

Rundo, Leonardo
2023-01-01

Abstract

Uncertainty quantification in automated image analysis is highly desired in many applications. Typically, machine learning models in classification or segmentation are only developed to provide binary answers; however, quantifying the uncertainty of the models can play a critical role for example in active learning or machine human interaction. Uncertainty quantification is especially difficult when using deep learning-based models, which are the state-of-the-art in many imaging applications. The current uncertainty quantification approaches do not scale well in high-dimensional real-world problems. Scalable solutions often rely on classical techniques, such as dropout, during inference or training ensembles of identical models with different random seeds to obtain a posterior distribution. In this paper, we present the following contributions. First, we show that the classical approaches fail to approximate the classification probability. Second, we propose a scalable and intuitive framework for uncertainty quantification in medical image segmentation that yields measurements that approximate the classification probability. Third, we suggest the usage of k-fold cross-validation to overcome the need for held out calibration data. Lastly, we motivate the adoption of our method in active learning, creating pseudo-labels to learn from unlabeled images and human-machine collaboration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4852991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact