Monolithic composite aerogel based on a photocatalytic system, constituted by Fe0 (ZVI) coupled with ZnS (FZ), embedded into syndiotactic polystyrene (sPS) matrix was used, for the first time, in the lindane degradation under UV light. The content of FZ photocatalyst inside the monolithic composite aerogel (FZsPS) composite was 3 wt%. FESEM images of FZsPS indicate that the FZ photocatalyst is well dispersed in the polymer matrix. EDS analyses and temperature-programmed reduction (TPR-H2) measurements revealed an interpenetrated structure of the ZVI and ZnS phases as well the presence of some iron in an oxidized form. Photocatalytic activity data showed that in presence FZsPS aerogel, the almost complete lindane degradation was achieved after only 30 min of UV irradiation time. FZsPS was also effective in the lindane mineralization since a TOC removal of about 94 % was detected after 180 min of treatment time. Remarkably, based on the toxicity evaluation on Artemia fran-ciscana, while the bare FZ photocatalyst showed significant toxicity per se, no toxicity or genotoxicity was found in the water treated with the FZsPS composite system where FZ is immobilized into the sPS aerogel matrix. Therefore the proposed composite photocatalyst can be considered as a model for a strategy to eliminate the environmental impact of catalysts that would otherwise be harmful to water.
Environmentally safe ZVI/ZnS-based polymer composite for lindane degradation in water: Assessment of photocatalytic activity and eco-toxicity
Sacco, O
Investigation
;Pragliola, SData Curation
;Lofrano, G
Data Curation
;Montalbano, GMembro del Collaboration Group
;Vaiano, VConceptualization
;Venditto, VConceptualization
2024-01-01
Abstract
Monolithic composite aerogel based on a photocatalytic system, constituted by Fe0 (ZVI) coupled with ZnS (FZ), embedded into syndiotactic polystyrene (sPS) matrix was used, for the first time, in the lindane degradation under UV light. The content of FZ photocatalyst inside the monolithic composite aerogel (FZsPS) composite was 3 wt%. FESEM images of FZsPS indicate that the FZ photocatalyst is well dispersed in the polymer matrix. EDS analyses and temperature-programmed reduction (TPR-H2) measurements revealed an interpenetrated structure of the ZVI and ZnS phases as well the presence of some iron in an oxidized form. Photocatalytic activity data showed that in presence FZsPS aerogel, the almost complete lindane degradation was achieved after only 30 min of UV irradiation time. FZsPS was also effective in the lindane mineralization since a TOC removal of about 94 % was detected after 180 min of treatment time. Remarkably, based on the toxicity evaluation on Artemia fran-ciscana, while the bare FZ photocatalyst showed significant toxicity per se, no toxicity or genotoxicity was found in the water treated with the FZsPS composite system where FZ is immobilized into the sPS aerogel matrix. Therefore the proposed composite photocatalyst can be considered as a model for a strategy to eliminate the environmental impact of catalysts that would otherwise be harmful to water.File | Dimensione | Formato | |
---|---|---|---|
SEPPUR_2024_ZVI-ZnS-composite lindane degradation & ecotoxicity.pdf
accesso aperto
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.