A generalization of the de Gennes-Alexander micronetworks theory is presented. In this framework, the phase transition of synthetic networks of superconducting islands is described by means of a Ginzburg-Landau approach adapted to the case of granular systems. The general implications of the theory are carefully explained. As a specific example, we demonstrate that star networks support the exponential localization of the order parameter accompanied by an enhancement of the critical temperature of the system. These findings contribute to clarify the physics of the phase transitions in synthetic networks of Josephson-coupled superconducting islands.
Order parameter focalization and critical temperature enhancement in synthetic networks of superconducting islands
Romeo, Francesco
2020-01-01
Abstract
A generalization of the de Gennes-Alexander micronetworks theory is presented. In this framework, the phase transition of synthetic networks of superconducting islands is described by means of a Ginzburg-Landau approach adapted to the case of granular systems. The general implications of the theory are carefully explained. As a specific example, we demonstrate that star networks support the exponential localization of the order parameter accompanied by an enhancement of the critical temperature of the system. These findings contribute to clarify the physics of the phase transitions in synthetic networks of Josephson-coupled superconducting islands.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.