Waveguide-integrated graphene photodiodes are on-chip optoelectronic devices with promising applications in telecommunications. Here, we present the electrical properties of a heterostructure consisting of multilayer graphene (MLGr) over a Si waveguide covered by an ultrathin Al2O3 layer. The waveguide is fabricated by etching a silicon-on-insulator (SOI) substrate with 220 nm Si and 1.5 μm buried oxide. The 5 nm-thick Al2O3 film is deposited by atomic layer deposition (ALD), while graphene, synthesized on copper by chemical vapor deposition (CVD), is transferred onto the Al2O3/Si rib by a wet transfer method. The MLGr/Al2O3/Si rib forms a Schottky structure with rectifying current–voltage characteristics, which are examined using the thermionic emission theory and Norde’s method. A Schottky barrier height 0.79 eV, an ideality factor n = 26, and a series resistance 11.6 MOhm are obtained. The device is promising for operation at the optical fiber communication wavelength of 1550 nm.

Graphene/Al2O3/Si Schottky diode with integrated waveguide on a silicon-on-insulator wafer

Di Bartolomeo, A.
Formal Analysis
;
2024-01-01

Abstract

Waveguide-integrated graphene photodiodes are on-chip optoelectronic devices with promising applications in telecommunications. Here, we present the electrical properties of a heterostructure consisting of multilayer graphene (MLGr) over a Si waveguide covered by an ultrathin Al2O3 layer. The waveguide is fabricated by etching a silicon-on-insulator (SOI) substrate with 220 nm Si and 1.5 μm buried oxide. The 5 nm-thick Al2O3 film is deposited by atomic layer deposition (ALD), while graphene, synthesized on copper by chemical vapor deposition (CVD), is transferred onto the Al2O3/Si rib by a wet transfer method. The MLGr/Al2O3/Si rib forms a Schottky structure with rectifying current–voltage characteristics, which are examined using the thermionic emission theory and Norde’s method. A Schottky barrier height 0.79 eV, an ideality factor n = 26, and a series resistance 11.6 MOhm are obtained. The device is promising for operation at the optical fiber communication wavelength of 1550 nm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4854351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact