The gravitino problem is investigated in the framework of extended gravity cosmologies. In particular, we consider f(R) gravity, the most natural extension of the Hilbert-Einstein action, and f(T) gravity, the extension of teleparallel equivalent gravity. Since in these theories, the expansion laws of the Universe are modified, as compared to the standard Lambda CDM cosmology, it follows that also the thermal history of particles gets modified. We show that f(R) models allow to avoid the late abundance of gravitinos. In particular, we found that for an appropriate choice of the parameters characterizing the f(R) model, the gravitino abundance turns out to be independent of the reheating temperature. A similar behavior is achieved also in the context of f(T) gravity. In this perspective, we can conclude that geometric corrections to standard General Relativity (and to Teleparallel Equivalent of General Relativity) can improve shortcomings both in cosmology and in unified theories beyond the standard model of particles.

The gravitino problem in extended gravity cosmologies

Capozziello, Salvatore
Membro del Collaboration Group
;
Lambiase, Gaetano
Membro del Collaboration Group
2021-01-01

Abstract

The gravitino problem is investigated in the framework of extended gravity cosmologies. In particular, we consider f(R) gravity, the most natural extension of the Hilbert-Einstein action, and f(T) gravity, the extension of teleparallel equivalent gravity. Since in these theories, the expansion laws of the Universe are modified, as compared to the standard Lambda CDM cosmology, it follows that also the thermal history of particles gets modified. We show that f(R) models allow to avoid the late abundance of gravitinos. In particular, we found that for an appropriate choice of the parameters characterizing the f(R) model, the gravitino abundance turns out to be independent of the reheating temperature. A similar behavior is achieved also in the context of f(T) gravity. In this perspective, we can conclude that geometric corrections to standard General Relativity (and to Teleparallel Equivalent of General Relativity) can improve shortcomings both in cosmology and in unified theories beyond the standard model of particles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4854561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact