The effects of solar photo-Fenton (SPF) process mediated by the iron chelate Fe3+ imminodisuccinic acid (Fe:IDS) on both the inactivation of seven relevant pathogens and the potential for antibiotic resistance transfer (degradation of antibiotic resistance genes (ARGs) and after treatment regrowth), in real secondary treated urban wastewater, were investigated for the first time. A comparison with results obtained by sunlight/H2O2 process and Fe3+ ethylenediaminedisuccinic acid (Fe:EDDS) SPF was also carried out. ARGs were quantified by polymerase chain reaction (PCR) in samples before and after (3 h) the treatment. The persistence of the selected pathogens and ARGs was also evaluated in regrowth tests (72 h) under environmentally mimicking conditions. Fe:IDS SPF resulted to be more effective (from 1.4 log removal for Staphylococcus spp. to 4.3 log removal for Escherichia coli) than Fe:EDDS SPF (from 0.8 log removal for Pseudomonas aeruginosa to 2.0 log removal for Total coliphages) and sunlight/H2O2 (from 1.2 log removal for Clostridium perfringens to 3.3 log removal for E. coli) processes for the seven pathogens investigated. Potential pathogens regrowth was also severely affected, as no substantial regrowth was observed, both in presence and absence of catalase. A similar trend was observed for ARGs removal too (until 0.001 fold change expression for qnrS after 3 h). However, a poor effect and a slight increase in fold change was observed after treatment especially for gyrA, mefA and intl1. Overall, the effect of the investigated processes on ARGs was found to be ARG dependent. Noteworthy, coliphages can regrow after sunlight/H2O2 treatment unlike SPF processes, increasing the risk of antibiotic resistance transfer by transduction mechanism. In conclusion, Fe:IDS SPF is an attractive solution for tertiary treatment of urban wastewater in small wastewater treatment plants as it can provide effective disinfection and a higher protection against antibiotic resistance transfer than the other investigated processes.

Urban wastewater disinfection by iron chelates mediated solar photo-Fenton: Effects on seven pathogens and antibiotic resistance transfer potential

La Manna, Pellegrino;De Carluccio, Marco;Oliva, Gianmaria;Vigliotta, Giovanni;Rizzo, Luigi
2024-01-01

Abstract

The effects of solar photo-Fenton (SPF) process mediated by the iron chelate Fe3+ imminodisuccinic acid (Fe:IDS) on both the inactivation of seven relevant pathogens and the potential for antibiotic resistance transfer (degradation of antibiotic resistance genes (ARGs) and after treatment regrowth), in real secondary treated urban wastewater, were investigated for the first time. A comparison with results obtained by sunlight/H2O2 process and Fe3+ ethylenediaminedisuccinic acid (Fe:EDDS) SPF was also carried out. ARGs were quantified by polymerase chain reaction (PCR) in samples before and after (3 h) the treatment. The persistence of the selected pathogens and ARGs was also evaluated in regrowth tests (72 h) under environmentally mimicking conditions. Fe:IDS SPF resulted to be more effective (from 1.4 log removal for Staphylococcus spp. to 4.3 log removal for Escherichia coli) than Fe:EDDS SPF (from 0.8 log removal for Pseudomonas aeruginosa to 2.0 log removal for Total coliphages) and sunlight/H2O2 (from 1.2 log removal for Clostridium perfringens to 3.3 log removal for E. coli) processes for the seven pathogens investigated. Potential pathogens regrowth was also severely affected, as no substantial regrowth was observed, both in presence and absence of catalase. A similar trend was observed for ARGs removal too (until 0.001 fold change expression for qnrS after 3 h). However, a poor effect and a slight increase in fold change was observed after treatment especially for gyrA, mefA and intl1. Overall, the effect of the investigated processes on ARGs was found to be ARG dependent. Noteworthy, coliphages can regrow after sunlight/H2O2 treatment unlike SPF processes, increasing the risk of antibiotic resistance transfer by transduction mechanism. In conclusion, Fe:IDS SPF is an attractive solution for tertiary treatment of urban wastewater in small wastewater treatment plants as it can provide effective disinfection and a higher protection against antibiotic resistance transfer than the other investigated processes.
File in questo prodotto:
File Dimensione Formato  
La Manna et al. 2024_WR.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.94 MB
Formato Adobe PDF
5.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4854775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact