InAs nanowire-based back-gated field-effect transistors realized starting from individual InAs nanowires are investigated at different temperatures and as building blocks of inverter circuits for logic applications. The nanodevices show n-type behavior with a carrier concentration up to 8.0 × 1017 cm−3 and corresponding electron mobility exceeding 1590 and 1940 cm2 V−1 s−1 at room temperature and 200 K, respectively. The investigation over a wide temperature range indicates no Schottky barrier at source/drain electrodes, where Ohmic contacts are formed with the Cr adhesion layer. The switching characteristics of the devices improve with decreasing temperature and a subthreshold swing less than 1 V/decade is achieved at 200 K, suggesting the occurrence of a trap population with density around 4 × 108 cm−1 eV−1. Besides, the nanodevices are exploited in single-transistor circuits with a resistive load. As an inverter, the circuit shows 30 % and 24 % of the voltage supply noise margins for the high and low states, respectively; as a low signal amplifier, it shows a gain that is weakly dependent on temperature. The present study highlights the impact of temperature on the operation of InAs nanowire-based back-gated transistors and evidences their potential applications in logic circuits including inverters and low-signal amplifiers.

Temperature behavior and logic circuit applications of InAs nanowire-based field-effect transistors

Viscardi, Loredana
Writing – Original Draft Preparation
;
Faella, Enver
Investigation
;
Intonti, Kimberly
Investigation
;
Giubileo, Filippo
Data Curation
;
Di Bartolomeo, Antonio
Writing – Review & Editing
2024-01-01

Abstract

InAs nanowire-based back-gated field-effect transistors realized starting from individual InAs nanowires are investigated at different temperatures and as building blocks of inverter circuits for logic applications. The nanodevices show n-type behavior with a carrier concentration up to 8.0 × 1017 cm−3 and corresponding electron mobility exceeding 1590 and 1940 cm2 V−1 s−1 at room temperature and 200 K, respectively. The investigation over a wide temperature range indicates no Schottky barrier at source/drain electrodes, where Ohmic contacts are formed with the Cr adhesion layer. The switching characteristics of the devices improve with decreasing temperature and a subthreshold swing less than 1 V/decade is achieved at 200 K, suggesting the occurrence of a trap population with density around 4 × 108 cm−1 eV−1. Besides, the nanodevices are exploited in single-transistor circuits with a resistive load. As an inverter, the circuit shows 30 % and 24 % of the voltage supply noise margins for the high and low states, respectively; as a low signal amplifier, it shows a gain that is weakly dependent on temperature. The present study highlights the impact of temperature on the operation of InAs nanowire-based back-gated transistors and evidences their potential applications in logic circuits including inverters and low-signal amplifiers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4854871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact