In this paper, we investigate Schwarzschild-like black holes within the framework of metric-affine bumblebee gravity. We explore the implications of such a gravitational setup on various astrophysical phenomena, including the presence of an accretion disk, the deflection angle of light rays, the establishment of greybody bounds, and the propagation of neutrinos. The metric-affine bumblebee gravity theory offers a unique perspective on gravitational interactions by introducing a vector field that couples to spacetime curvature. We analyze the behavior of accretion disks around Schwarzschild-like black holes in this modified gravity scenario, considering the effects of the bumblebee field on the accretion process. Furthermore, we scrutinize the deflection angle of light rays as they traverse the gravitational field, highlighting potential deviations from standard predictions due to the underlying metric-affine structure. Investigating greybody bounds in this context sheds light on the thermal radiation emitted by black holes and how the modified gravity framework influences this phenomenon. Moreover, we explore neutrino propagation around Schwarzschild-like black holes within metric-affine bumblebee gravity, examining alterations in neutrino trajectories and interactions compared to conventional general relativity. By comprehensively probing these aspects, we aim to unravel the distinctive features and consequences of Schwarzschild-like black holes in the context of metric-affine bumblebee gravity, offering new insights into the nature of gravitational interactions and their observable signatures.

Probing Schwarzschild-like black holes in metric-affine bumblebee gravity with accretion disk, deflection angle, greybody bounds, and neutrino propagation

Lambiase, Gaetano
Membro del Collaboration Group
;
Mastrototaro, Leonardo
Membro del Collaboration Group
;
2023-01-01

Abstract

In this paper, we investigate Schwarzschild-like black holes within the framework of metric-affine bumblebee gravity. We explore the implications of such a gravitational setup on various astrophysical phenomena, including the presence of an accretion disk, the deflection angle of light rays, the establishment of greybody bounds, and the propagation of neutrinos. The metric-affine bumblebee gravity theory offers a unique perspective on gravitational interactions by introducing a vector field that couples to spacetime curvature. We analyze the behavior of accretion disks around Schwarzschild-like black holes in this modified gravity scenario, considering the effects of the bumblebee field on the accretion process. Furthermore, we scrutinize the deflection angle of light rays as they traverse the gravitational field, highlighting potential deviations from standard predictions due to the underlying metric-affine structure. Investigating greybody bounds in this context sheds light on the thermal radiation emitted by black holes and how the modified gravity framework influences this phenomenon. Moreover, we explore neutrino propagation around Schwarzschild-like black holes within metric-affine bumblebee gravity, examining alterations in neutrino trajectories and interactions compared to conventional general relativity. By comprehensively probing these aspects, we aim to unravel the distinctive features and consequences of Schwarzschild-like black holes in the context of metric-affine bumblebee gravity, offering new insights into the nature of gravitational interactions and their observable signatures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4855952
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact