The quasi-two-dimensional electronic gas at the (111) SrTiO3-based heterostructure interfaces is described by a multiband tight-binding model providing electronic bands in agreement at low energies with photoemission experiments. We analyze both the roles of the spin-orbit coupling and of the trigonal crystal-field effects. We point out the presence of a regime with sizable strain where the band structure exhibits a Dirac cone whose features are consistent with ab initio approaches. The combined effect of spin-orbit coupling and trigonal strain gives rise to nontrivial spin and orbital angular momenta patterns in the Brillouin zone and to quantum spin Hall effect by opening a gap at the Dirac cone. The system can switch from a conducting to a topological insulating state via modification of trigonal strain within a parameter range which is estimated to be experimentally achievable.
Strain-induced topological phase transition at (111) SrTiO3-based heterostructures
Trama, M.
Investigation
;Cataudella, V.Writing – Review & Editing
;
2021
Abstract
The quasi-two-dimensional electronic gas at the (111) SrTiO3-based heterostructure interfaces is described by a multiband tight-binding model providing electronic bands in agreement at low energies with photoemission experiments. We analyze both the roles of the spin-orbit coupling and of the trigonal crystal-field effects. We point out the presence of a regime with sizable strain where the band structure exhibits a Dirac cone whose features are consistent with ab initio approaches. The combined effect of spin-orbit coupling and trigonal strain gives rise to nontrivial spin and orbital angular momenta patterns in the Brillouin zone and to quantum spin Hall effect by opening a gap at the Dirac cone. The system can switch from a conducting to a topological insulating state via modification of trigonal strain within a parameter range which is estimated to be experimentally achievable.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.