The quasi-two-dimensional electronic gas at the (111) SrTiO3-based heterostructure interfaces is described by a multiband tight-binding model providing electronic bands in agreement at low energies with photoemission experiments. We analyze both the roles of the spin-orbit coupling and of the trigonal crystal-field effects. We point out the presence of a regime with sizable strain where the band structure exhibits a Dirac cone whose features are consistent with ab initio approaches. The combined effect of spin-orbit coupling and trigonal strain gives rise to nontrivial spin and orbital angular momenta patterns in the Brillouin zone and to quantum spin Hall effect by opening a gap at the Dirac cone. The system can switch from a conducting to a topological insulating state via modification of trigonal strain within a parameter range which is estimated to be experimentally achievable.

Strain-induced topological phase transition at (111) SrTiO3-based heterostructures

Trama, M.
Investigation
;
Cataudella, V.
Writing – Review & Editing
;
2021-01-01

Abstract

The quasi-two-dimensional electronic gas at the (111) SrTiO3-based heterostructure interfaces is described by a multiband tight-binding model providing electronic bands in agreement at low energies with photoemission experiments. We analyze both the roles of the spin-orbit coupling and of the trigonal crystal-field effects. We point out the presence of a regime with sizable strain where the band structure exhibits a Dirac cone whose features are consistent with ab initio approaches. The combined effect of spin-orbit coupling and trigonal strain gives rise to nontrivial spin and orbital angular momenta patterns in the Brillouin zone and to quantum spin Hall effect by opening a gap at the Dirac cone. The system can switch from a conducting to a topological insulating state via modification of trigonal strain within a parameter range which is estimated to be experimentally achievable.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4855998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact