Precursory phenomena to earthquakes have always attracted researchers’ attention. Among the most investigated precursors, foreshocks play a key role. However, their prompt identification with respect to background seismicity still remains an issue. The task is worsened when dealing with low-magnitude earthquakes. Despite that, seismology and, in particular real-time seismology, can nowadays benefit from the use of Artificial Intelligence (AI) to face the challenge of effective precursory signals discrimination. Here, we propose a deep learning method named PreD-Net (precursor detection network) to address precursory signal identification of induced earthquakes. PreD-Net has been trained on data related to three different induced seismicity areas, namely The Geysers, located in California, USA, Cooper Basin, Australia, Hengill in Iceland. The network shows a suitable model generalization, providing considerable results on samples that were not used during the network training phase of all the sites. Tests on related samples of induced large events, with the addition of data collected from the Basel catalogue, Switzerland, assess the possibility of building a real-time warning strategy to be used to avoid adverse consequences during field operations.

Deep learning forecasting of large induced earthquakes via precursory signals

Vincenzo Convertito;Ortensia Amoroso;
2024-01-01

Abstract

Precursory phenomena to earthquakes have always attracted researchers’ attention. Among the most investigated precursors, foreshocks play a key role. However, their prompt identification with respect to background seismicity still remains an issue. The task is worsened when dealing with low-magnitude earthquakes. Despite that, seismology and, in particular real-time seismology, can nowadays benefit from the use of Artificial Intelligence (AI) to face the challenge of effective precursory signals discrimination. Here, we propose a deep learning method named PreD-Net (precursor detection network) to address precursory signal identification of induced earthquakes. PreD-Net has been trained on data related to three different induced seismicity areas, namely The Geysers, located in California, USA, Cooper Basin, Australia, Hengill in Iceland. The network shows a suitable model generalization, providing considerable results on samples that were not used during the network training phase of all the sites. Tests on related samples of induced large events, with the addition of data collected from the Basel catalogue, Switzerland, assess the possibility of building a real-time warning strategy to be used to avoid adverse consequences during field operations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4856021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact