: Emergence from anesthesia (AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness (RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of "hysteresis". Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness (LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients' quality of recovery, and avoiding early and late postoperative complications.
Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications
Cascella, Marco
;
2018-01-01
Abstract
: Emergence from anesthesia (AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness (RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of "hysteresis". Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness (LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients' quality of recovery, and avoiding early and late postoperative complications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.