: West Nile virus (WNV) is a member of the Japanese encephalitis serocomplex, which was first described in 1937 as neurotropic virus in Uganda in 1937. Subsequently, WNV was identified in the rest of the old-world and from 1999 in North America. Birds are the primary hosts, and WNV is maintained in a bird-mosquito-bird cycle, with pigs as amplifying hosts and humans and horses as incidental hosts. WNV transmission is warranted by mosquitoes, usually of the Culex spp., with a tendency to spill over when mosquitoes' populations build up. Other types of transmissions have been described in endemic areas, as trough transplanted organs and transfused blood, placenta, maternal milk, and in some occupational settings. WNV infections in North America and Europe are generally reported during the summer and autumn. Extreme climate phenomena and soil degradation are important events which contribute to expansion of mosquito population and consequently to the increasing number of infections. Draught plays a pivotal role as it makes foul water standing in city drains and catch basins richer of organic material. The relationship between global warming and WNV in climate areas is depicted by investigations on 16,298 WNV cases observed in the United States during the period 2001-2005 that showed that a 5°C increase in mean maximum weekly temperature was associated with a 32-50% higher incidence of WNV infection. In Europe, during the 2022 season, an increase of WNV cases was observed in Mediterranean countries where 1,041 cases were reported based on ECDC data. This outbreak can be associated to the climate characteristics reported during this period and to the introduction of a new WNV-1 lineage. In conclusion, current climate change is causing an increase of mosquito circulation that supports the widest spread of some vector-borne virus including WNV diffusion in previously non-permissible areas. This warrant public health measures to control vectors circulation to reduce WNV and to screen blood and organ donations.

West Nile Virus diffusion in temperate regions and climate change. A systematic review

Conti, Valeria;Sellitto, Carmine;Franci, Gianluigi;Pagliano, Pasquale
2022-01-01

Abstract

: West Nile virus (WNV) is a member of the Japanese encephalitis serocomplex, which was first described in 1937 as neurotropic virus in Uganda in 1937. Subsequently, WNV was identified in the rest of the old-world and from 1999 in North America. Birds are the primary hosts, and WNV is maintained in a bird-mosquito-bird cycle, with pigs as amplifying hosts and humans and horses as incidental hosts. WNV transmission is warranted by mosquitoes, usually of the Culex spp., with a tendency to spill over when mosquitoes' populations build up. Other types of transmissions have been described in endemic areas, as trough transplanted organs and transfused blood, placenta, maternal milk, and in some occupational settings. WNV infections in North America and Europe are generally reported during the summer and autumn. Extreme climate phenomena and soil degradation are important events which contribute to expansion of mosquito population and consequently to the increasing number of infections. Draught plays a pivotal role as it makes foul water standing in city drains and catch basins richer of organic material. The relationship between global warming and WNV in climate areas is depicted by investigations on 16,298 WNV cases observed in the United States during the period 2001-2005 that showed that a 5°C increase in mean maximum weekly temperature was associated with a 32-50% higher incidence of WNV infection. In Europe, during the 2022 season, an increase of WNV cases was observed in Mediterranean countries where 1,041 cases were reported based on ECDC data. This outbreak can be associated to the climate characteristics reported during this period and to the introduction of a new WNV-1 lineage. In conclusion, current climate change is causing an increase of mosquito circulation that supports the widest spread of some vector-borne virus including WNV diffusion in previously non-permissible areas. This warrant public health measures to control vectors circulation to reduce WNV and to screen blood and organ donations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4859775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact