In the context of the circular economy, the development of innovative and low-carbon concrete that incorporates different kinds of waste materials is gaining attention among the research community, regulatory agencies, and policymakers. These materials can be incorporated into concrete mixtures as aggregates or as fillers for improvement of product properties. This study aims to identify reliable designs for biochar-augmented cementitious products and general applications through technical, environmental, and economic assessments. The outcomes demonstrate that 5 wt% biochar addition could enhance the compressive strength of the final products. Using biochar, together with other recycled materials, can enormously reduce the environmental impacts, especially for global warming, enabling biochar-augmented cementitious products and general application as carbon-negative resources. The highest GWP reduction reached −720 kg CO2/tonne, equal to a 200% saving. A high quantity of biochar could be included in several specific applications (up to 60 wt%). The economic assessment highlights that the proposed designs are cost-effective and carbon tax can be significantly reduced. Carbon credits can also be earned for some carbon-negative designs. These findings can serve to mitigate GHG emissions and provide decision-makers with a reliable and holistic framework towards the goal of carbon neutrality.

A holistic framework of biochar-augmented cementitious products and general applications: Technical, environmental, and economic evaluation

Ferrara C.;De Feo G.;
2024-01-01

Abstract

In the context of the circular economy, the development of innovative and low-carbon concrete that incorporates different kinds of waste materials is gaining attention among the research community, regulatory agencies, and policymakers. These materials can be incorporated into concrete mixtures as aggregates or as fillers for improvement of product properties. This study aims to identify reliable designs for biochar-augmented cementitious products and general applications through technical, environmental, and economic assessments. The outcomes demonstrate that 5 wt% biochar addition could enhance the compressive strength of the final products. Using biochar, together with other recycled materials, can enormously reduce the environmental impacts, especially for global warming, enabling biochar-augmented cementitious products and general application as carbon-negative resources. The highest GWP reduction reached −720 kg CO2/tonne, equal to a 200% saving. A high quantity of biochar could be included in several specific applications (up to 60 wt%). The economic assessment highlights that the proposed designs are cost-effective and carbon tax can be significantly reduced. Carbon credits can also be earned for some carbon-negative designs. These findings can serve to mitigate GHG emissions and provide decision-makers with a reliable and holistic framework towards the goal of carbon neutrality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4862171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact