We test the validity of the Generalized Heisenberg's Uncertainty principle in the presence of strong gravitational fields nearby rotating black holes; Heisenberg's principle is supposed to require additional correction terms when gravity is taken into account, leading to a more general formulation also known as the Generalized Uncertainty Principle. Using as probes electromagnetic waves acquiring orbital angular momentum when lensed by a rotating black hole, we find from numerical simulations a relationship between the spectrum of the orbital angular momentum of light and the corrections needed to formulate the Generalized Uncertainty Principle, here characterized by the rescaled parameter β0, a function of the Planck's mass and the bare mass of the black hole. Then, from the analysis of the observed twisted light due to the gravitational field of the compact object observed in M87, we find new limits for the parameter β0. With this method, complementary to black hole shadow circularity analyses, we obtain more precise limits from the experimental data of M87*, confirming the validity of scenarios compatible with General Relativity, within the uncertainties due to the experimental errors present in EHT data and those due to the numerical simulations and analysis.

Constraining the Generalized Uncertainty Principle with the light twisted by rotating black holes and M87*

Feleppa F.;
2022-01-01

Abstract

We test the validity of the Generalized Heisenberg's Uncertainty principle in the presence of strong gravitational fields nearby rotating black holes; Heisenberg's principle is supposed to require additional correction terms when gravity is taken into account, leading to a more general formulation also known as the Generalized Uncertainty Principle. Using as probes electromagnetic waves acquiring orbital angular momentum when lensed by a rotating black hole, we find from numerical simulations a relationship between the spectrum of the orbital angular momentum of light and the corrections needed to formulate the Generalized Uncertainty Principle, here characterized by the rescaled parameter β0, a function of the Planck's mass and the bare mass of the black hole. Then, from the analysis of the observed twisted light due to the gravitational field of the compact object observed in M87, we find new limits for the parameter β0. With this method, complementary to black hole shadow circularity analyses, we obtain more precise limits from the experimental data of M87*, confirming the validity of scenarios compatible with General Relativity, within the uncertainties due to the experimental errors present in EHT data and those due to the numerical simulations and analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4862194
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact