Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n-type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left-shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe-based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.
n-Type GaSe Thin Flake for Field Effect Transistor, Photodetector, and Optoelectronic Memory
Kumar, ArunWriting – Original Draft Preparation
;Pelella, AnielloInvestigation
;Intonti, KimberlyInvestigation
;Viscardi, LoredanaFormal Analysis
;Durante, OfeliaFormal Analysis
;Giubileo, FilippoInvestigation
;Romano, PaolaInvestigation
;Di Bartolomeo, Antonio
Writing – Review & Editing
2024-01-01
Abstract
Abstract The family of 2D chalcogenide semiconductors has been growing rapidly. Metal monochalcogenides, for instance, can enable new possibilities in functional electronics and optoelectronics. A Gallium Selenide (GaSe) thin flake is used to fabricate a back gated field effect transistor (FET) with n-type conduction behavior and wide hysteresis at the ambient conditions. The device shows high mobility up to 28 cm2 V−1 s−1 with Ion/Ioff ratio over 103. Under the laser exposure, the device shows a decrease in the threshold voltage and a left-shift of the transfer characteristic with a slight increase in the current. The transfer characteristic exhibits a hysteretic behavior with hysteresis width linearly dependent on the applied gate voltage. Moreover, the GaSe-based FET shows a photo response with a photoresponsivity of 475 mAW−1 and detectivity of 4.6 × 1012 Jones. The photocurrent rise and decay times are 0.1 and 1.3 s, respectively. Furthermore, the GaSe FET device can be used as a performant memory device with well separated states and memory window enhanced by the laser exposure, confirming an optoelectronic memory class.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.