In this study, corticosteroid-beta-cyclodextrin (beta-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of beta-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 degrees C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 +/- 0.180 mu m and 0.131 +/- 0.070 mu m in the case of DEX and PRED, respectively. Job's method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release.

Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes

Mottola, Stefania;De Marco, Iolanda
2024-01-01

Abstract

In this study, corticosteroid-beta-cyclodextrin (beta-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of beta-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 degrees C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 +/- 0.180 mu m and 0.131 +/- 0.070 mu m in the case of DEX and PRED, respectively. Job's method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4863452
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact