Mantle cell lymphoma (MCL) is characterized by a profound deregulation of the mechanisms controlling cell-cycle progression and survival. We herein show that the combination of 9-cis-retinoic acid (RA) and IFN-alpha induces marked antiproliferative and proapoptotic effects in MCL cells through the modulation of critical targets. Particularly, IFN-alpha enhances RA-mediated G(0)-G(1) cell accumulation by downregulating cyclin D1 and increasing p27(Kip1) and p21(WAF1/Cip1) protein levels. Furthermore, RA/IFN-alpha combination also induces apoptosis by triggering both caspases-8 and -9 resulting in Bax and Bak activation. In particular, RA/IFN-alpha treatment downregulates the antiapoptotic Bcl-xL and Bfl-1 proteins and upregulates the proapoptotic BH3-only Noxa protein. Sequestration of Mcl-1 and Bfl-1 by upregulated Noxa results in the activation of Bid, and the consequent induction of apoptosis is inhibited by Noxa silencing. Noxa upregulation is associated with nuclear translocation of the FOXO3a transcription factor as consequence of RA/IFN-alpha-induced Akt inhibition. Pharmacologic suppression of Akt, but not of TORC1, increases Noxa protein levels and downregulates Bfl-1 protein supporting the conclusion that the inhibition of the Akt pathway, the resulting FOXO3a activation and Noxa upregulation are critical molecular mechanisms underlying RA/IFN-alpha-dependent MCL cell apoptosis. These results support the potential therapeutic value of RA/IFN-alpha combination in MCL management. Cancer Res; 72(7); 1825-35. (C)2012 AACR.

Retinoic Acid/Alpha-Interferon Combination Inhibits Growth and Promotes Apoptosis in Mantle Cell Lymphoma through Akt-Dependent Modulation of Critical Targets

Dal Col, J;
2012-01-01

Abstract

Mantle cell lymphoma (MCL) is characterized by a profound deregulation of the mechanisms controlling cell-cycle progression and survival. We herein show that the combination of 9-cis-retinoic acid (RA) and IFN-alpha induces marked antiproliferative and proapoptotic effects in MCL cells through the modulation of critical targets. Particularly, IFN-alpha enhances RA-mediated G(0)-G(1) cell accumulation by downregulating cyclin D1 and increasing p27(Kip1) and p21(WAF1/Cip1) protein levels. Furthermore, RA/IFN-alpha combination also induces apoptosis by triggering both caspases-8 and -9 resulting in Bax and Bak activation. In particular, RA/IFN-alpha treatment downregulates the antiapoptotic Bcl-xL and Bfl-1 proteins and upregulates the proapoptotic BH3-only Noxa protein. Sequestration of Mcl-1 and Bfl-1 by upregulated Noxa results in the activation of Bid, and the consequent induction of apoptosis is inhibited by Noxa silencing. Noxa upregulation is associated with nuclear translocation of the FOXO3a transcription factor as consequence of RA/IFN-alpha-induced Akt inhibition. Pharmacologic suppression of Akt, but not of TORC1, increases Noxa protein levels and downregulates Bfl-1 protein supporting the conclusion that the inhibition of the Akt pathway, the resulting FOXO3a activation and Noxa upregulation are critical molecular mechanisms underlying RA/IFN-alpha-dependent MCL cell apoptosis. These results support the potential therapeutic value of RA/IFN-alpha combination in MCL management. Cancer Res; 72(7); 1825-35. (C)2012 AACR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4863695
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact