“Defect” based estimates of the local truncation error are here successfully employed to obtain optimal parameters in locally conservative finite difference methods for PDEs. Numerical tests show that new proposed technique greatly improves the accuracy of the underlying methods maintaining the preservation of the conservation laws.

Fine Tuning Numerical Schemes for PDEs

Frasca Caccia G.
;
2024-01-01

Abstract

“Defect” based estimates of the local truncation error are here successfully employed to obtain optimal parameters in locally conservative finite difference methods for PDEs. Numerical tests show that new proposed technique greatly improves the accuracy of the underlying methods maintaining the preservation of the conservation laws.
2024
9780735449541
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4869711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact