In this paper, we introduce an approach to enhance maritime Situation Awareness (SA) through a multilevel and multiview representation of situations using Rough K-means clustering with variable granularity of information. We evaluate the approach by comparing Rough K-means with standard K-means clustering. The results demonstrate that Rough K-means achieves comparable accuracy to standard K-means while providing the added benefit of identifying upper and lower approximation clusters, thereby handling uncertainty in data and improving SA. The approach aligns with the principles of Granular Computing, offering a user-centered and dynamic method for enhancing maritime SA.

Granular Clustering for Maritime Situation Awareness

Aliberti Luca;D'Aniello Giuseppe
;
Gaeta Matteo;
2024-01-01

Abstract

In this paper, we introduce an approach to enhance maritime Situation Awareness (SA) through a multilevel and multiview representation of situations using Rough K-means clustering with variable granularity of information. We evaluate the approach by comparing Rough K-means with standard K-means clustering. The results demonstrate that Rough K-means achieves comparable accuracy to standard K-means while providing the added benefit of identifying upper and lower approximation clusters, thereby handling uncertainty in data and improving SA. The approach aligns with the principles of Granular Computing, offering a user-centered and dynamic method for enhancing maritime SA.
2024
9783031647758
9783031647765
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4875951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact