We find a new solution to calculate the orbital periastron advance of a test body subject to a central gravitational force field for relativistic theories and models beyond Einstein. This analitycal formula has general validity that includes all the post-Newtonian (PN) contributions to the dynamics and is useful for high-precision gravitational tests. The solution is directly applicable to corrective potentials of various forms, without the need for numerical integration. Later, we apply it to the scalar tensor fourth order gravity (STFOG) and noncommutative geometry, providing corrections to the Newtonian potential of Yukawa-like form V(r)=alpha e-beta rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(r)=\alpha \frac{e<^>{-\beta r}}{r}$$\end{document}, and we conduct the first analysis involving all the PN terms for these theories. The same work is performed with a Schwarzschild geometry perturbed by a Quintessence Field, leading to a power-law potential V(r)=alpha qrq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(r)=\alpha _q {r}<^>q$$\end{document}. Finally, by using astrometric data of the Solar System planetary precessions and those of the S2 star around Sgr A*, we infer new theoretical constraints and improvements in the bounds for beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. The resulting simulated orbits turn out to be compatible with general relativity.

Relativistic periastron advance beyond Einstein theory: analytical solution with applications

Tedesco A.
;
Capolupo A.;Lambiase G.
2024-01-01

Abstract

We find a new solution to calculate the orbital periastron advance of a test body subject to a central gravitational force field for relativistic theories and models beyond Einstein. This analitycal formula has general validity that includes all the post-Newtonian (PN) contributions to the dynamics and is useful for high-precision gravitational tests. The solution is directly applicable to corrective potentials of various forms, without the need for numerical integration. Later, we apply it to the scalar tensor fourth order gravity (STFOG) and noncommutative geometry, providing corrections to the Newtonian potential of Yukawa-like form V(r)=alpha e-beta rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(r)=\alpha \frac{e<^>{-\beta r}}{r}$$\end{document}, and we conduct the first analysis involving all the PN terms for these theories. The same work is performed with a Schwarzschild geometry perturbed by a Quintessence Field, leading to a power-law potential V(r)=alpha qrq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(r)=\alpha _q {r}<^>q$$\end{document}. Finally, by using astrometric data of the Solar System planetary precessions and those of the S2 star around Sgr A*, we infer new theoretical constraints and improvements in the bounds for beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. The resulting simulated orbits turn out to be compatible with general relativity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4877031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact