Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti alpha-amylase and anti alpha-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.
Antimicrobial, anti-enzymatic and antioxidant activities of essential oils from some Tunisian Eucalyptus species
Caputo, Lucia
;De Feo, Vincenzo;Polito, Flavio
2024-01-01
Abstract
Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti alpha-amylase and anti alpha-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.