We establish regularity results for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p p -growth, p ≥ 2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand φ not necessarily regular. For a minimal configuration (u, E), we prove partial Hölder continuity of the gradient ∇ u of the deformation.

Quasiconvex bulk and surface energies: C1,α regularity

Luca Esposito;Lorenzo Lamberti
2024-01-01

Abstract

We establish regularity results for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p p -growth, p ≥ 2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand φ not necessarily regular. For a minimal configuration (u, E), we prove partial Hölder continuity of the gradient ∇ u of the deformation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4878771
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact