A platform for indoor monitoring inside buildings, integrating both conventional and environmentally friendly devices with energy-harvesting sources, is proposed. Biomaterials such as gelatin and chitosan, derived from renewable resources, have been utilized to fabricate hydrogel and active layers for sensors and supercapacitors. These devices enhance the environmental profile of the proposed solution by employing sustainable materials and optimizing energy consumption. The developed electronic board prototype provides a versatile platform for testing various sensor configurations while accommodating different energy-harvesting sources. The article details the design of an energy harvesting system for indoor monitoring, covering various aspects regarding energy sources, power management circuits, and low-power microcontroller units. It examines energy storage devices and sensors, including both eco-friendly and commercial ones, as well as radio transceivers with different communication technologies. Additionally, an energy analysis to evaluate the performance and energy efficiency of the platform is presented.

Design of Environmental Sensor Board for Energy Harvesting: Integration of Conventional and Eco-Friendly Sensors with Power Generation Sources

Avallone G.
Data Curation
;
Barone C.
Writing – Original Draft Preparation
;
Pagano S.
Writing – Review & Editing
2024-01-01

Abstract

A platform for indoor monitoring inside buildings, integrating both conventional and environmentally friendly devices with energy-harvesting sources, is proposed. Biomaterials such as gelatin and chitosan, derived from renewable resources, have been utilized to fabricate hydrogel and active layers for sensors and supercapacitors. These devices enhance the environmental profile of the proposed solution by employing sustainable materials and optimizing energy consumption. The developed electronic board prototype provides a versatile platform for testing various sensor configurations while accommodating different energy-harvesting sources. The article details the design of an energy harvesting system for indoor monitoring, covering various aspects regarding energy sources, power management circuits, and low-power microcontroller units. It examines energy storage devices and sensors, including both eco-friendly and commercial ones, as well as radio transceivers with different communication technologies. Additionally, an energy analysis to evaluate the performance and energy efficiency of the platform is presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4881451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact