Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La2CuO4 indicate that quantum fluctuations are much stronger in SrCuO2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic N & eacute;el order as the ground state. Our results indicate that SrCuO2-due to strong quantum fluctuations-is a unique starting point for the exploration of novel magnetic ground states.Magnetic excitations in infinite-layer cuprates have been intensively studied. Here the authors use resonant inelastic x-ray scattering and theoretical calculations to study magnons in thin films of SrCuO2, finding distinct magnon dispersion attributed to renormalization due to quantum fluctuations.

Magnon interactions in a moderately correlated Mott insulator

Galdi A.;
2024

Abstract

Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La2CuO4 indicate that quantum fluctuations are much stronger in SrCuO2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic N & eacute;el order as the ground state. Our results indicate that SrCuO2-due to strong quantum fluctuations-is a unique starting point for the exploration of novel magnetic ground states.Magnetic excitations in infinite-layer cuprates have been intensively studied. Here the authors use resonant inelastic x-ray scattering and theoretical calculations to study magnons in thin films of SrCuO2, finding distinct magnon dispersion attributed to renormalization due to quantum fluctuations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4885660
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact