The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying mechanism for superconductivity. In this review, we discuss the current understanding of pairing symmetry in BiS2-based superconductors and particularly the role of point-contact spectroscopy in unravelling the mechanism underlying the superconducting state. We also review experimental results obtained with different techniques including angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, specific heat measurements, and nuclear magnetic resonance spectroscopy. The integration of experimental results and theoretical predictions sheds light on the complex interplay between electronic correlations, spin fluctuations, and Fermi surface topology in determining the coupling mechanism. Finally, we highlight recent advances and future directions in the field of BiS2-based superconductors, underlining the potential technological applications.

The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy

Romano, Paola
Writing – Review & Editing
;
Pelella, Aniello
Investigation
;
Di Bartolomeo, Antonio
Writing – Review & Editing
;
Giubileo, Filippo
Writing – Original Draft Preparation
2024-01-01

Abstract

The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying mechanism for superconductivity. In this review, we discuss the current understanding of pairing symmetry in BiS2-based superconductors and particularly the role of point-contact spectroscopy in unravelling the mechanism underlying the superconducting state. We also review experimental results obtained with different techniques including angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, specific heat measurements, and nuclear magnetic resonance spectroscopy. The integration of experimental results and theoretical predictions sheds light on the complex interplay between electronic correlations, spin fluctuations, and Fermi surface topology in determining the coupling mechanism. Finally, we highlight recent advances and future directions in the field of BiS2-based superconductors, underlining the potential technological applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4887529
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact