Objective: Neurosurgical indications for the superior eyelid transorbital endoscopic approach (SETOA) are rapidly expanding over the last years. Nevertheless, as any new technique, a detailed knowledge of the anatomy of the surgical target area, the operative corridor, and the specific surgical landmark from this different perspective is required for a safest and successful surgery. Therefore, the aim of this study is to provide, through anatomical dissections, a detailed investigation of the surgical anatomy revealed by SETOA via anterolateral triangle of the middle cranial fossa. We also sought to define the relevant surgical landmarks of this operative corridor. Methods: Eight embalmed and injected adult cadaveric specimens (16 sides) underwent dissection and exposure of the cavernous sinus and middle cranial fossa via superior eyelid endoscopic transorbital approach. The anterolateral triangle was opened and its content exposed. An extended endoscopic endonasal trans-clival approach (EEEA) with exposure of the cavernous sinus content and skeletonization of the paraclival and parasellar segments of the internal carotid artery (ICA) was also performed, and the anterolateral triangle was exposed. Measurements of the surface area of this triangle from both surgical corridors were calculated in three head specimens using coordinates of its borders under image-guide navigation. Results: The drilling of the anterolateral triangle via SETOA unfolds a space that can be divided by the course of the vidian nerve into two windows, a wider “supravidian” and a narrower “infravidian,” which reveal different anatomical corridors: a “medial supravidian” and a “lateral supravidian,” divided by the lacerum segment of the ICA, leading to the lower clivus, and to the medial aspect of the Meckel’s cave and terminal part of the horizontal petrous ICA, respectively. The infravidian corridor leads medially into the sphenoid sinus. The arithmetic means of the accessible surface area of the anterolateral triangle were 45.48 ± 3.31 and 42.32 ± 2.17 mm2 through transorbital approach and endonasal approach, respectively. Conclusion: SETOA can be considered a minimally invasive route complementary to the extended endoscopic endonasal approach to the anteromedial aspect of the Meckel’s cave and the foramen lacerum. The lateral loop of the trigeminal nerve represents a reliable surgical landmark to localize the lacerum segment of the ICA from this corridor. Nevertheless, as any new technique, a learning curve is needed, and the clinical feasibility should be proven.
The anterolateral triangle as window on the foramen lacerum from transorbital corridor: anatomical study and technical nuances
Corvino S.;de Notaris M.Writing – Original Draft Preparation
2023-01-01
Abstract
Objective: Neurosurgical indications for the superior eyelid transorbital endoscopic approach (SETOA) are rapidly expanding over the last years. Nevertheless, as any new technique, a detailed knowledge of the anatomy of the surgical target area, the operative corridor, and the specific surgical landmark from this different perspective is required for a safest and successful surgery. Therefore, the aim of this study is to provide, through anatomical dissections, a detailed investigation of the surgical anatomy revealed by SETOA via anterolateral triangle of the middle cranial fossa. We also sought to define the relevant surgical landmarks of this operative corridor. Methods: Eight embalmed and injected adult cadaveric specimens (16 sides) underwent dissection and exposure of the cavernous sinus and middle cranial fossa via superior eyelid endoscopic transorbital approach. The anterolateral triangle was opened and its content exposed. An extended endoscopic endonasal trans-clival approach (EEEA) with exposure of the cavernous sinus content and skeletonization of the paraclival and parasellar segments of the internal carotid artery (ICA) was also performed, and the anterolateral triangle was exposed. Measurements of the surface area of this triangle from both surgical corridors were calculated in three head specimens using coordinates of its borders under image-guide navigation. Results: The drilling of the anterolateral triangle via SETOA unfolds a space that can be divided by the course of the vidian nerve into two windows, a wider “supravidian” and a narrower “infravidian,” which reveal different anatomical corridors: a “medial supravidian” and a “lateral supravidian,” divided by the lacerum segment of the ICA, leading to the lower clivus, and to the medial aspect of the Meckel’s cave and terminal part of the horizontal petrous ICA, respectively. The infravidian corridor leads medially into the sphenoid sinus. The arithmetic means of the accessible surface area of the anterolateral triangle were 45.48 ± 3.31 and 42.32 ± 2.17 mm2 through transorbital approach and endonasal approach, respectively. Conclusion: SETOA can be considered a minimally invasive route complementary to the extended endoscopic endonasal approach to the anteromedial aspect of the Meckel’s cave and the foramen lacerum. The lateral loop of the trigeminal nerve represents a reliable surgical landmark to localize the lacerum segment of the ICA from this corridor. Nevertheless, as any new technique, a learning curve is needed, and the clinical feasibility should be proven.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.