We demonstrate that the well-known (k↑,-k↓) Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism coexisting with an attractive Hubbard term. Driven by this discovery and aiming at exploring the conduction properties, we investigate the dynamics of fermionic particles confined in a ring-shaped lattice. We assume that fermions are simultaneously influenced by the pairing interaction and by an Aharonov-Bohm electromagnetic phase, which is incorporated into the model in a highly nontrivial manner. Remarkably, the aforementioned model shows Richardson integrability for both integer and half-integer values of the applied magnetic flux φ/φ0, thus permitting the exact solution of a genuine many-body problem. We discuss the ground-state properties of both two-particle and many-particle systems, drawing comparisons with results from the attractive Hubbard model. Our approach combines exact diagonalization, density matrix renormalization group techniques, and numerical solution of the Richardson equations. This comprehensive analysis allows us to study various key metrics, including the system's conductivity as a function of the interaction strength. In this way, the BCS-BEC transition is investigated in a continuous manner, thus permitting to shed light on fundamental aspects of superconducting pairing. Our findings can be experimentally tested in a condensed matter context or, with greater level of control, using atomtronics platforms.

Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism

Romeo F.
;
Maiellaro A.
2024-01-01

Abstract

We demonstrate that the well-known (k↑,-k↓) Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism coexisting with an attractive Hubbard term. Driven by this discovery and aiming at exploring the conduction properties, we investigate the dynamics of fermionic particles confined in a ring-shaped lattice. We assume that fermions are simultaneously influenced by the pairing interaction and by an Aharonov-Bohm electromagnetic phase, which is incorporated into the model in a highly nontrivial manner. Remarkably, the aforementioned model shows Richardson integrability for both integer and half-integer values of the applied magnetic flux φ/φ0, thus permitting the exact solution of a genuine many-body problem. We discuss the ground-state properties of both two-particle and many-particle systems, drawing comparisons with results from the attractive Hubbard model. Our approach combines exact diagonalization, density matrix renormalization group techniques, and numerical solution of the Richardson equations. This comprehensive analysis allows us to study various key metrics, including the system's conductivity as a function of the interaction strength. In this way, the BCS-BEC transition is investigated in a continuous manner, thus permitting to shed light on fundamental aspects of superconducting pairing. Our findings can be experimentally tested in a condensed matter context or, with greater level of control, using atomtronics platforms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4889616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact