Superconducting microstrip single photon detectors (SMSPDs) are increasingly attracting the interest of the scientific community as a new platform for large area detectors with unprecedented advantaged in terms of fabrication. However, while their operativity at the telecommunication wavelength was achieved, working beyond 1.55 µm is challenging. Here, we experimentally demonstrate single-photon operation of NbRe microstrips at wavelengths of 1.55 and 2 µm. The devices are structured as pairs of parallel microstrips with widths ranging from 1.4 to 2.2 μm and lengths from 5 to 10 μm. This innovative design may assure large sensitive areas, without affecting the kinetic inductance, namely the time performance of the detectors. The results are discussed in the framework of the hot-spot two-temperature model.

Single photon detection up to 2 µm in pair of parallel microstrips based on NbRe ultrathin films

Attanasio C.;
2024-01-01

Abstract

Superconducting microstrip single photon detectors (SMSPDs) are increasingly attracting the interest of the scientific community as a new platform for large area detectors with unprecedented advantaged in terms of fabrication. However, while their operativity at the telecommunication wavelength was achieved, working beyond 1.55 µm is challenging. Here, we experimentally demonstrate single-photon operation of NbRe microstrips at wavelengths of 1.55 and 2 µm. The devices are structured as pairs of parallel microstrips with widths ranging from 1.4 to 2.2 μm and lengths from 5 to 10 μm. This innovative design may assure large sensitive areas, without affecting the kinetic inductance, namely the time performance of the detectors. The results are discussed in the framework of the hot-spot two-temperature model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4889998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact