This work addresses the Knapsack Problem with Forfeit Sets, a recently introduced variant of the 0/1 Knapsack Problem considering subsets of items associated with contrasting choices. Some penalty costs need to be paid whenever the number of items in the solution belonging to a forfeit set exceeds a predefined allowance threshold. We propose an effective metaheuristic to solve the problem, based on the Biased Random-Key Genetic Algorithm paradigm. An appropriately designed decoder function assigns a feasible solution to each chromosome, and improves it using some additional heuristic procedures. We show experimentally that the algorithm outperforms significantly a previously introduced metaheuristic for the problem.
A biased random-key genetic algorithm for the knapsack problem with forfeit sets
Cerulli R.;D'Ambrosio C.;Raiconi A.
2024-01-01
Abstract
This work addresses the Knapsack Problem with Forfeit Sets, a recently introduced variant of the 0/1 Knapsack Problem considering subsets of items associated with contrasting choices. Some penalty costs need to be paid whenever the number of items in the solution belonging to a forfeit set exceeds a predefined allowance threshold. We propose an effective metaheuristic to solve the problem, based on the Biased Random-Key Genetic Algorithm paradigm. An appropriately designed decoder function assigns a feasible solution to each chromosome, and improves it using some additional heuristic procedures. We show experimentally that the algorithm outperforms significantly a previously introduced metaheuristic for the problem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.