Herein we report two processes facilitated by diisopropylethylamine (DIPEA) for the synthesis of novel bridged polycyclic molecule analogues to natural products. The use of 4-bromoisochroman-3-one initiated an autoxidation reaction, followed by a Diels-Alder cycloaddition in the presence of electron-deficient dienophiles. Mechanistic studies revealed isochromane-3,4-dione as a key intermediate, which undergoes in situ dienolization/dearomatization followed by a [4 + 2] cycloaddition. Subsequently, the synthesis and direct application of isochromane-3,4-diones in the Diels-Alder reaction enabled the development of an alternative method with an enhanced efficiency and improved atom economy. In addition to chalcones, other enones and common electron-poor alkenes, bearing ester, nitro and cyano electron-withdrawing groups (including both terminal, cis acyclic and cyclic alkenes), were successfully reacted. The mechanism was also investigated, and a subsequent reductive ring opening was successfully carried out.
Isochroman-3,4-dione and Tandem Aerobic Oxidation of 4-Bromoisochroman-3-one in the Highly Regio- and Diastereoselective Diels-Alder Reaction for the Construction of Bridged Polycyclic Lactones
Di Mola A.;Pierri G.;Massa A.
2024-01-01
Abstract
Herein we report two processes facilitated by diisopropylethylamine (DIPEA) for the synthesis of novel bridged polycyclic molecule analogues to natural products. The use of 4-bromoisochroman-3-one initiated an autoxidation reaction, followed by a Diels-Alder cycloaddition in the presence of electron-deficient dienophiles. Mechanistic studies revealed isochromane-3,4-dione as a key intermediate, which undergoes in situ dienolization/dearomatization followed by a [4 + 2] cycloaddition. Subsequently, the synthesis and direct application of isochromane-3,4-diones in the Diels-Alder reaction enabled the development of an alternative method with an enhanced efficiency and improved atom economy. In addition to chalcones, other enones and common electron-poor alkenes, bearing ester, nitro and cyano electron-withdrawing groups (including both terminal, cis acyclic and cyclic alkenes), were successfully reacted. The mechanism was also investigated, and a subsequent reductive ring opening was successfully carried out.File | Dimensione | Formato | |
---|---|---|---|
mousavi-et-al-2024-isochroman-3-4-dione-and-tandem-aerobic-oxidation-of-4-bromoisochroman-3-one-in-the-highly-regio-and (1).pdf
embargo fino al 30/01/2026
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Copyright dell'editore
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.